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Abstract

Equilibrium equations in the form of complementarity conditions often appear as
constraints in optimization problems. Problems of this type are commonly referred
to as mathematical programs with complementarity constraints (MPCCs). A popu-
lar method for solving MPCCs is the penalty interior-point algorithm (PIPA). This
paper presents a small example for which PIPA converges to a nonstationary point,
providing a counterexample to the established theory. The reasons for this adverse
behavior are discussed.
Keywords: Nonlinear programming, interior-point methods, PIPA, MPEC, MPCC,
equilibrium constraints.
AMS-MSC2000: 90C30, 90C33, 90C51, 49M37, 65K10.

1 Introduction

Equilibrium equations in the form of complementarity conditions often appear as con-
straints in optimization problems. Problems of this type, commonly referred to as mathe-
matical programs with complementarity constraints (MPCCs), arise in many engineering
and economic applications; see the survey [7] and the monographs [16, 18] for further ref-
erences. The growing collections of test problems [14, 5] indicate that this is an important
area. MPCCs can be expressed in general as

minimize f(x, y, w, z)
subject to x ∈ X

F (x, y, w, z) = 0
0 ≤ y ⊥ w ≥ 0,

(1.1)

where X ⊂ IRn is a polyhedral set, f and F are twice continuously differentiable functions,
and y, w ∈ IRm. The complementarity constraint y ⊥ w means that either a component
of y is zero or the corresponding component of w is zero, which implies that yT w = 0.

Many approaches exist for solving MPCCs. These include branch-and-bound methods
[2], implicit nonsmooth approaches [18], piecewise SQP methods [16], perturbation and
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penalization approaches [6] analyzed in [22], and the penalty interior-point algorithm
(PIPA) [16], whose convergence properties are the subject of this note.

Recently, there has also been renewed interest in solving (1.1) with standard nonlinear
programming (NLP) techniques by replacing the complementarity constraint by

yT w ≤ 0, y ≥ 0, w ≥ 0.

This approach had been regarded as numerically unsafe because (1.1) violates a constraint
qualification at any feasible point [21]. However, numerical [8] and theoretical [1, 9]
evidence suggests that sequential quadratic programming (SQP) solvers are able to solve
large classes of MPCCs. A similar analysis is being extended to interior-point methods
(IPMs) [3, 15, 20].

This note is organized as follows. The next section briefly describes PIPA and presents
its convergence result. Section 3 presents a small counterexample that shows that PIPA
can fail to converge to a stationary point for certain admissible choices of parameters.
Section 4 discusses the example and suggests a remedy that avoids this problem.

2 The Penalty Interior-Point Algorithm (PIPA)

PIPA [16, Chapter 6.1] solves MPCCs of the form (1.1). It has been studied by Fukushima
and Pang [11] and by Pieper [19] and has been applied to a number of real applications
in finance [13], target classification [17], and electricity markets [12].

PIPA generates a sequence of iterates (xk, yk, wk, zk) that are strictly interior in yk > 0,
wk > 0. The iterates are computed by solving a quadratic direction-finding problem. In
that sense, PIPA combines aspects of interior-point and SQP methods.

We use d to denote the step or displacement computed by PIPA. Subscripts such as dx

refer the part of d corresponding to the x variables; superscripts are used to denote iterates
or evaluation of functions at a particular point, for example, ∇fk = ∇f(xk, yk, wk, zk).
Diagonal matrices are denoted by W = diag(w) and Y = diag(y) and e = (1, . . . , 1)T .

The algorithm solves the following direction-finding problem at every iteration:

minimize ∇fkT
d + 1

2
dT

x Qkdx

subject to xk + dx ∈ X

F k +∇F kT
d = 0

Y kdw + W kdy = −Y kwk + σ ykT
wk

m
e

‖dx‖2
2 ≤ c

(
‖F k‖+ ykT

wk
)

,

(2.2)

where c > 0 and σ ∈ (0, 1) are parameters and Qk approximates second-order information
in f and F . Note that (2.2) has a quadratic trust-region type of constraint. If this
constraint is replaced by the `∞ norm, then (2.2) becomes a quadratic program (QP).
Note also that the linearization of the complementarity constraint Y w = 0 is relaxed by

σ ykT
wk

m
e, giving PIPA an interior-point flavor. Note that PIPA is not strictly an interior-

point algorithm, as it remains interior only with respect to the complementary variables
y, w but not with respect to the other constraints. We will show that the final trust-region
type constraint is the source of the problems affecting PIPA.
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After determining a search direction, PIPA performs a backtracking line-search to
ensure that yk, wk remain positive and close to the central path. This is achieved by
finding the zero τ of

gk(τ) = (1− ρ)σ
ykT

wk

m
+ τ

(
min

1≤i≤m
dk

yi
dk

wi
− ρ

dkT

y dk
w

m

)
, (2.3)

if it exists, or setting τ = 1 otherwise. It can be shown (see [16, Lemma 6.1.8]) that any
step along d with step length τ ∈ [0, τ ] maintains positivity and centrality of the iterates.
Global convergence is enforced by further reducing the step length τ to yield sufficient
reduction in a quadratic penalty function

Pα(x, y, w, z) = f(x, y, w, z) + α
(
‖F (x, y, w, z)‖2 + yT w

)
, (2.4)

where the penalty parameter α > 0 is chosen as follows: Let p ≥ 1 be the smallest integer
such that the step ensures sufficient model decrease, that is,

∇fkT

d− αp
k−1

(
2‖F (xk, yk, wk, zk)‖2 + (1− σ)ykT

wk
)

< −‖F (xk, yk, wk, zk)‖2 − ykT

wk,

(2.5)
and the penalty parameter is set to α = αk = αp

k−1. Note that the penalty function Pα

mixes a quadratic penalty for the nonlinear equation F with an `1 penalty for comple-
mentarity (since yk, wk > 0, it follows that ‖ykT

wk‖1 = ykT
wk). Sufficient reduction in

the penalty function

Pα(xk + τdx, y
k + τdy, w

k + τdw, zk + τdz)− Pα(xk, yk, wk, zk)

≤ γτ
(
∇fkT

d− αp
k−1

(
2‖F (xk, yk, wk, zk)‖2 + (1− σ)ykT

wk
))

is achieved by performing a backtracking line-search, where γ ∈ (0, 1) and τ is the fi-
nal step length. Further details of the algorithm can be found in [16]. PIPA can be
summarized as follows.

Penalty Interior-Point Algorithm (PIPA)

1. Initialization:
Choose parameters c > 0, and 0 < σ, γ, ρ < 1, choose a starting point (x0, y0, w0, z0)
such that y0, w0 > 0 suitably centered, choose a penalty parameter α > 0, and set k = 0.

repeat
2. Direction-finding problem: Solve problem (2.2) for a trial step d = dk.
3. Step size determination: Find a step size τ = τk to:

3.1 Ensure centrality and positivity of (y, w) by finding the root of gk(τ) in (2.3)
or setting τ = 1− ε if this root does not exist or is greater than 1.

3.2 Ensure sufficient reduction in the quadratic penalty function Pα(x, y, w, z)
in (2.4) by performing an Armijo-search on Pα.

Let τk be the step size determined in 3.1 and 3.2.
4. Update: (xk+1, yk+1, wk+1, zk+1) = (xk, yk, wk, zk) + τk(d

k
x, d

k
y, d

k
w, dk

z), k = k + 1.
until ‖d‖ ≤ ε
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This presentation of PIPA is less sophisticated than that in [16], which allows for
instance σ to vary with the iteration. Convergence of PIPA is established in [16] under
the following two assumptions.

[SC] Strict complementarity of the solution, namely, y∗ + w∗ > 0

[NS] Nonsingularity of the matrix[
∇yF

∗ ∇wF ∗ ∇zF
∗

W ∗ Y ∗ 0

]
A sufficient condition of [NS] is that the Jacobian of F satisfies the mixed P0 property
(see [16, Definition 6.1.4 and Proposition 6.1.6]). The following theorem summarizes the
convergence results in [16].

Theorem 2.1 [16, Theorem 6.1.17] Suppose that the Hessian matrices W k are
bounded and that σ > 0. If the penalty parameter α is bounded, then every limit
point of (xk, yk, wk, zk) that satisfies [SC] and [NS] is a stationary point of (1.1).

In the next section, we present a small example for which PIPA converges to a non-
stationary point, contradicting Theorem 2.1.

3 A Counterexample

In this section, we show that PIPA may fail to converge to a stationary point. This result
contradicts the convergence results of [16]. This section examines the behavior of PIPA
applied to the following small example:

minimize x + w
subject to −1 ≤ x ≤ 1

−1 + x + y = 0
0 ≤ y ⊥ w ≥ 0.

(3.1)

The solution of (3.1) is (x, y, w)∗ = (−1, 2, 0), which satisfies the assumptions [SC] and
[NS], since y∗ + w∗ = 2 > 0 and[

∇yF
∗ ∇wF ∗

W ∗ Y ∗

]
=

[
1 0
0 2

]
is nonsingular. Next, we show that this example generates a limit point that is not
stationary. Specifically, we perform a standard iteration of the algorithm and bound the
limit away from stationarity. The following lemma summarizes our result.
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Lemma 3.1 PIPA applied to the Example (3.1) and started at (x0, y0, w0) =
(0, 1, 0.02), with c = 1, σ = 0.1, γ = 0.01, ρ = 0.9, and α = 2, generates a sequence of
iterates satisfying

1 ≤ yk ≤ yk+1 (3.2)

wk+1 ≤ 1

2
wk ≤ 2

100
(3.3)

xk+1 ≥ xk −
√

ykwk > −1 (3.4)

yk+1wk+1 ≤ 1

2
ykwk (3.5)

5

9
≤ τk ≤ 1. (3.6)

Proof. The starting point satisfies the linear equation, which implies that the equality
constraints are satisfied for all subsequent iterations. The theorem follows by induction.
Clearly, the assertions hold for the starting point. Now assume that (3.2) to (3.6) hold
for k − 1, and show that they also hold for k.

The direction-finding problem for this example can be simplified as follows:

minimize dx + dw

subject to −1 ≤ xk + dx ≤ 1
dx + dy = 0
wkdy + ykdw = (σ − 1)ykwk

−
√

ykwk ≤ dx ≤
√

ykwk,

(3.7)

where Qk = 0 for simplicity. However, the example remains valid for certain positive
semi-definite bounded Qk (as will be shown below).

First we show that the optimal basis B to the LP (3.7) is given by 1 0 1
1 wk 0
0 yk 0

−1

=

 0 1 −wk

yk

0 0 1
yk

1 −1 wk

yk

 .

From this, multipliers can be computed as

λk = B−1∇f =

 0 1 −wk

yk

0 0 1
yk

1 −1 wk

yk


 1

0
1

 =

 −wk

yk

1
yk

1 + wk

yk

 .

Optimality follows, since λk
3 ≥ 0 for the only inequality constraint. The step d can also

be computed as

dk = B−T bk =

 −
√

ykwk√
ykwk

− 9
10

wk − wk

yk

√
ykwk

 ,
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where bk = (0,− 9
10

ykwk,−
√

ykwk)T is the right-hand side of the active constraints.
Note that for any positive semi-definite Qk, this solution remains unchanged as long

as λk
3 ≥ 0. The contribution of the Hessian to the multipliers can be estimated by adding

the Hessian term to the gradient and re-solving for the multipliers,

λ̃k
3 = λk

3 + B−1Qkdk ≥ 1 +
wk

yk
− ‖B−1Qk‖‖dk‖,

which remains positive for ‖Qk‖ or ‖dk‖ sufficiently small. Thus, the basis remains optimal
and the same conclusions apply even if a positive definite Qk is used.

Next, we show that (3.4) follows by applying the step dk, using τ k ≤ 1 and induction:

xk+1 = xk + τ kdk
x ≥ xk −

√
ykwk ≥ x0 −

k∑
l=0

√
ylwl ≥ x0 −

√
y0w0

k∑
l=0

(
1√
2

)l

≥ x0 −
√

y0w0

∞∑
l=0

(
1√
2

)l

≥ 0−
√

2

10

√
2

1−
√

2
' −0.4828 > −1. (3.8)

This implies that the “choice” of active set in the LP (3.7) was correct, and the lower
bound on x is never active during the iteration. Next we show that (3.2) follows by
applying the step in the y component,

yk+1 = yk + τ k
√

ykwk ≥ yk ≥ 1.

Next consider (3.6), and observe that τ k ≤ 1 follows trivially. To obtain the lower bound,
observe that the zero of gk(τ) in (2.3) is given by the following expression, where the
superscripts k have been omitted for the sake of simplicity

τ = − 1

10

yw

dwdy

=
y2(

9y + 10
√

yw
)√

yw

=
1

9

√
y

√
w

1

1 + 10
9

√
w√
y

=
1

9

√
y

√
w

∞∑
l=0

(
−10

9

√
w
√

y

)l

.

Setting q = (10/9)(
√

w/
√

y), we can write this equation as

τ =
1

9

√
y

√
w

∞∑
l=0

(−q)l =
1

9

√
y

√
w

(1− q)

(
1 +

∞∑
l=0

q2l

)

≥ 1

9

√
y

√
w

(1− q) ≥ 10

9
√

2

(
1−

√
2

9

)
>

5

9
.

It remains to show that this lower bound on τ also passes the second line-search criterion.
The penalty update rule (2.5) simplifies because F (xk, yk, wk, zk) = 0 for all k. Thus, we
need to find the smallest integer p ≥ 1 such that

∇fkT

d− αp(1− σ)ykT

wk < −αp(1− σ)ykT

wk < −ykT

wk
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holds. Since ∇fkT
d < 0 and α(1 − σ) > 1, this is always satisfied for p = 1, and the

penalty parameter is never increased. Finally, this step size also satisfies the conditions
for the Armijo search in Step 3.2. The actual reduction clearly satisfies

P k+1
α − P k

α = τdx + τdw + α
(
yk+1wk+1 − ykwk

)
.

Since yk+1wk+1 ≤ 1
2
ykwk, it follows that

P k+1
α − P k

α ≤ τdx + τdw − α
1

2
ykwk,

which implies that the sufficient reduction condition,

P k+1
α − P k

α ≤ γτdx + γτdw − α(1− σ)γykwk,

holds for any γ ≤ 1, since (1− σ)γ ≤ 1
2
.

Next consider (3.3). Since τ ≥ 5
9
, it follows that

wk+1 = wk + τ

(
− 9

10
wk − wk

yk

√
ykwk

)
≤ 1

2
wk − 5

9

wk

yk

√
ykwk. (3.9)

Note that 1/2 − (5/9)(
√

wk/
√

yk) ≥ 1/2 − (5/9)(
√

2/10) > 0. Thus, it is possible to
bound the new complementarity violation after the step by

yk+1wk+1 ≤
(
yk +

√
ykwk

)(
1
2
wk − 5

9
wk

yk

√
ykwk

)
= 1

2
ykwk − 5

9
wk
√

ykwk + 1
2
wk
√

ykwk − 5
9
(wk)2

≤ 1
2
ykwk

obtaining (3.5). This concludes the proof. �

We have already shown in (3.8) that xk+1 ≥ −0.4828 > −1. Similarly, an upper bound
can be derived for the state iterates as

yk+1 = yk + τ kdk
y ≤ yk +

√
ykwk ≤ y0 +

∞∑
l=0

√
ylwl ≤ 1 +

√
2

10

√
2√

2− 1
≈ 1.4828; (3.10)

see (3.8). These bounds can also be verified numerically. Example (3.1) and PIPA have
been implemented in AMPL [10] by using the “looping extension” which allows the conve-
nient implementation of algorithms in AMPL. The sequence generated is given in Table 1
and confirms the bounds given above. The columns headed “ared” and “pred” in Table 1
refer to the actual and predicted reduction. Their implications are discussed below.

Thus, it follows that all iterates remain in a compact set, namely,

0 = x0 ≥ xk ≥ −0.4828
1 = y0 ≤ yk ≤ 1.4828

2
100

= w0 ≥ wk ≥ 0,

and the sequence (x, y, w)k has a limit point (x, y, w)∞. From (3.9) it follows that

wk+1 ≤ wk

(
1

2
− 5

9yk

√
ykwk

)
≤ 1

2
wk,
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Table 1: Iterates, actual and predicted reduction of AMPL implementation of PIPA
k xk yk wk ared pred
1 0 1 0.02
2 -0.096022613 1.0960226 0.0058578644 -0.198 -0.137
3 -0.17606958 1.1760696 0.00016323495 -0.0974 -0.0982
4 -0.18991126 1.1899113 1.4549224E-05 -0.0143 -0.0143
5 -0.1940679 1.1940679 1.4171928E-06 -0.00421 -0.0042
6 -0.19536745 1.1953675 1.4145236E-07 -0.00131 -0.0013
7 -0.19577825 1.1957782 1.4223933E-08 -0.000412 -0.000411
8 -0.19590853 1.1959085 1.433645E-09 -0.00013 -0.00013
9 -0.1959499 1.1959499 1.4460519E-10 -4.14e-05 -4.14e-05

10 -0.19596304 1.195963 1.4586827E-11 -1.32e-05 -1.31e-05

so that w∞ = 0 and y∞
T
w∞ = 0. Therefore, PIPA converges to a limit point (x, y, w)∞

such that
0 ≥ x∞ ≥ −0.4828
1 ≤ y∞ ≤ 1.4828

w∞ = 0.

This limit point satisfies complementarity and the linear constraints for problem (3.1)
(since (x, y, w)0 satisfies the linear constraints). Moreover, this limit point also satisfies
the assumptions of Theorem 2.1. Assumption [SC] is satisfied because y∞+w∞ ≥ 1 > 0,
and Assumption [NS] holds because[

M I
W∞ Y ∞

]
=

[
1 0
0 y∞

]
is nonsingular for all 1 ≤ y∞ ≤ 1.4828. However, the limit point is clearly not a stationary
point, thereby contradicting Theorem 2.1.

4 Discussion and Remedy

In the preceding section, a small example has been presented for which PIPA converges to
a feasible but nonstationary limit point. This example contradicts [16, Theorem 6.1.17],
which establishes the convergence of PIPA. In particular, since τ ≥ 5/9 > 0, we observe
that part (i) of the proof of [16, Theorem 6.1.17] is wrong.

The reason for the failure of PIPA is the trust-region constraint

‖dx‖2
2 ≤ c

(
‖F k‖+ ykT

wk
)

=: ∆k (4.11)

in the direction-finding problem (2.2). The trust-region radius ∆k converges to zero as
the iterates approach feasibility, thereby limiting the progress toward optimality in the
controls x. This adverse behavior can be expected to occur whenever the iterates approach
feasibility “faster” than optimality.

Linking the trust-region radius to the feasibility of the problem is counterintuitive.
Normally, ∆k is controlled by the algorithm, rather than by the iterates. In particular,
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it should reflect how well the model problem (2.2) approximates the original problem,
measured, for instance, by the agreement between actual reduction,

ared = P k
α − P k+1

α ,

and predicted reduction,

pred = ∇fkT

d− αp(1− σ)ykT

wk.

Table 1 shows that, in this example, both the actual and the predicted reductions show
near-perfect agreement toward the end. Thus, one would expect ∆k to be increased rather
than decreased. The adverse situation in which (4.11) limits progress toward optimality
can be easily detected. The Lagrange multiplier of (4.11) indicates whether progress can
be made by relaxing this constraint. In the present example, this multiplier converges to
1.

One possible way to remedy the adverse behavior of PIPA is to control the trust-
region radius by using standard trust-region techniques. The direction-finding problem
then becomes

minimize ∇fkT
d + 1

2
dT

x Qkdx

subject to xk + dx ∈ X

F k +∇F kT
d = 0

Y kdw + W kdy = −Y kwk + σ ykT
wk

m
e

‖dx‖ ≤ ∆k,

(4.12)

where the trust-region is now controlled by the algorithm. A typical updating scheme for
∆k is as follows. First compute the ratio of actual over predicted reduction

ρk :=
ared

pred
,

and then update ∆k according to

∆k+1 ∈


[γ0∆k, γ1∆k] if ρk < η1

[γ1∆k, ∆k] if ρk ∈ [η1, η2)
[∆k, γ2∆k] if ρk ≥ η2

in Step 4, where 0 < γ0 ≤ γ1 < 1 ≤ γ2, and 0 < η1 < η2 < 1. Typical values for these
constants are γ0 = γ1 = 0.5, γ2 = 2, η1 = 0.25, and η2 = 0.75.

This results in a mixed trust-region/line-search algorithm. Convergence can be estab-
lished under the assumption that the Jacobian of F ,[

∇yF ∇wF ∇zF
W Y 0

]
,

remains nonsingular and has a bounded inverse along the lines of the coupled trust-region
approach of Dennis et al. [4], since the QP subproblem can be regarded as a problem in
dx only after eliminating (dy, dw, dz) using the linearization of F , which is nonsingular.
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